Extensions 1→N→G→Q→1 with N=C3xC6 and Q=C22

Direct product G=NxQ with N=C3xC6 and Q=C22
dρLabelID
C2xC6272C2xC6^272,50

Semidirect products G=N:Q with N=C3xC6 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C3xC6):C22 = C2xS32φ: C22/C1C22 ⊆ Aut C3xC6124+(C3xC6):C2^272,46
(C3xC6):2C22 = S3xC2xC6φ: C22/C2C2 ⊆ Aut C3xC624(C3xC6):2C2^272,48
(C3xC6):3C22 = C22xC3:S3φ: C22/C2C2 ⊆ Aut C3xC636(C3xC6):3C2^272,49

Non-split extensions G=N.Q with N=C3xC6 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C3xC6).1C22 = S3xDic3φ: C22/C1C22 ⊆ Aut C3xC6244-(C3xC6).1C2^272,20
(C3xC6).2C22 = C6.D6φ: C22/C1C22 ⊆ Aut C3xC6124+(C3xC6).2C2^272,21
(C3xC6).3C22 = D6:S3φ: C22/C1C22 ⊆ Aut C3xC6244-(C3xC6).3C2^272,22
(C3xC6).4C22 = C3:D12φ: C22/C1C22 ⊆ Aut C3xC6124+(C3xC6).4C2^272,23
(C3xC6).5C22 = C32:2Q8φ: C22/C1C22 ⊆ Aut C3xC6244-(C3xC6).5C2^272,24
(C3xC6).6C22 = C3xDic6φ: C22/C2C2 ⊆ Aut C3xC6242(C3xC6).6C2^272,26
(C3xC6).7C22 = S3xC12φ: C22/C2C2 ⊆ Aut C3xC6242(C3xC6).7C2^272,27
(C3xC6).8C22 = C3xD12φ: C22/C2C2 ⊆ Aut C3xC6242(C3xC6).8C2^272,28
(C3xC6).9C22 = C6xDic3φ: C22/C2C2 ⊆ Aut C3xC624(C3xC6).9C2^272,29
(C3xC6).10C22 = C3xC3:D4φ: C22/C2C2 ⊆ Aut C3xC6122(C3xC6).10C2^272,30
(C3xC6).11C22 = C32:4Q8φ: C22/C2C2 ⊆ Aut C3xC672(C3xC6).11C2^272,31
(C3xC6).12C22 = C4xC3:S3φ: C22/C2C2 ⊆ Aut C3xC636(C3xC6).12C2^272,32
(C3xC6).13C22 = C12:S3φ: C22/C2C2 ⊆ Aut C3xC636(C3xC6).13C2^272,33
(C3xC6).14C22 = C2xC3:Dic3φ: C22/C2C2 ⊆ Aut C3xC672(C3xC6).14C2^272,34
(C3xC6).15C22 = C32:7D4φ: C22/C2C2 ⊆ Aut C3xC636(C3xC6).15C2^272,35
(C3xC6).16C22 = D4xC32central extension (φ=1)36(C3xC6).16C2^272,37
(C3xC6).17C22 = Q8xC32central extension (φ=1)72(C3xC6).17C2^272,38

׿
x
:
Z
F
o
wr
Q
<